تابع یکی از مفاهیم نظریه مجموعه ها و حساب دیفرانسیل و انتگرال است. بطور ساده میتوان گفت که به قاعدههای تناظری که به هر ورودی خود یک و فقط یک خروجی نسبت میدهند، تابع گفته میشود.
توابع ریشه nام x را نشان میدهند.
عدد متغیر در تصویر معادل n میباشد.
(دوستان توجه داشته باشيد سرتيتر زير لينك سايته....از اونجا ميتونيد جزوات رو دريافت كنيد)
اموزش تابع وتابع معکوس ویژه دانش اموزان سال دوم دبیرستان
تابع به عنوان مفهومی در ریاضیات، توسط گوتفرید لایبنیتس در سال ۱۶۹۴، با هدف توصیف یک کمیت در رابطه با یک منحنی مانند شیب یک نمودار در یک نقطه خاص به وجود آمد. امروزه به توابعی که توسط لایبنیز تعریف شدند، توابع مشتقپذیر میگوییم.
واژه تابع بعدها توسط لئونارد اویلر در قرن هجدهم، برای توصیف یک گزاره یا فرمول شامل متغیرهای گوناگون مورد استفاده قرار گرفت، مانند f(x) = sin(x) + x3.
در طی قرن نوزدهم، ریاضیدانان شروع به فرمول بندی تمام شاخههای ریاضی براساس نظریه مجموعهها کردند. وایراشتراس بیشتر خواهان به وجود آمدن حساب دیفرانسیل و انتگرال در علم حساب بود تا در هندسه، یعنی بیشتر طرفدار تعریف اویلر بود.
در ابتدا، ایده تابع ترجیحاً محدود شد. ژوزف فوریه مدعی بود که تمام توابع از سری فوریه پیروی میکنند در حالی که امروزه با گسترش تعریف توابع، ریاضیدانان توانستند به مطالعه توابعی در ریاضی بپردازند که که در سراسر دامنه خود پیوسته ولی در هیچ نقطهای مشتقپذیر نیستند این گونه توابع توسط وایراشتراس معرفی شدند. کشف چنین توابعی موجب شد تا توابع تنها به توابع پیوسته و مشتقپذیر محدود نشوند.
تا انتهای قرن نوزدهم ریاضیدانان در هر موضوع ریاضی به دنبال تعریفی بودند که براساس نظریه مجموعهها و نتایج آن باشد. دیریکله و لوباچوسکی هر یک به طور مستقل همزمان تعریف «رسمی» از تابع ارائه دادند.
بر طبق این تعریف، تابع حالت خاصی از یک رابطه است که در آن برای هر مقدار اولیه یک مقدار ثانویه منحصربهفرد وجود دارد.
تعریف تابع در علم رایانه، به عنوان حالت خاصی از یک رابطه، به طور گستردهتر در منطق و علم تئوری رایانه مطالعه میشود.
در دیگر علوم
توابع در شاخههای مختلف علوم کاربرد فراوان دارند. برای مثال در فیزیک، هنگامی که میخواهیم رابطه بین چند متغیر را بیان کنیم، مخصوصاً هنگامی که مقدار یک متغیر کاملاً وابسته به متغیرهای دیگر است از توابع استفاده میشود.
توابع در علوم مختلف بیشتر به عنوان عملگر در نظر گرفته میشوند که کاری را بر روی ورودیهای خود انجام میدهند. توابع را همچنین مورد استفاده در علم رایانه برای مدلسازی ساختمان دادهها و تأثیرات الگوریتم میبینیم.
تعریف تابع
تابع را میتوان به عنوان قاعدهای خاص برای تناظر بین اعضای دو مجموعهٔ دامنه و برد تعریف کرد. به بیان دقیقتر، اگر و دو مجموعه باشند، یک تابع از مجموعهٔ به مجموعهٔ را میتوان قاعدهای تعریف کرد که به هر عضو مجموعه چون ، یک و فقط یک عضو از مجموعه را چون نسبت میدهد. تابع از مجموعه به مجموعه را با نشان میدهیم.
شکل ۱. نمونهای از یک تناظر که تابع نیست
شکل ۲. نمونهای از یک تابع
برای نمونه تناظر شکل ۱ نمایش دهنده یک تابع نمیباشد. چراکه عضو ۳ از مجموعه به دو عضو ( و ) از متناظر شدهاست. اما شکل ۲ نشان دهنده یک تابع است. هر چند که دو عضو گوناگون از مجموعه به یک عضو خاص از نسبت داده شدهاند.
تابع به عنوان هنجار تناظر، چیزی بجز توصیف نحوه تناظر اعضای به نیست که به طور کامل بهوسیله همه زوجهای مرتب برای هر مشخص میشود پس تابع را میتوان به عنوان مجموعه همه این زوجهای مرتب، یعنی مجموعه همه زوجهای مرتبی که مولفه اول آنها عضو بوده و مولفه دوم آنها تصویر مولفه اول تحت تابع در است، تعریف کرد. شرط تابع بودن تضمین میکند که هیچ دو زوج متمایزی در تابع دارای مولفه اول یکسان نخواهند بود.
در این صورت در تابع برای هر گزاره را به صورت نشان میدهیم.
تعریف دقیق
یک تابع از مجموعه به مجموعه رابطهای چون از مجموعه به مجموعه است که دارای شرایط زیر باشد:
- دامنه مجموعه باشد، یعنی .
- برای هر عنصر یگانه موجود باشد که یا به عبارتی هیچ دو زوج مرتب متمایزی متعلق به دارای مولفه اول یکسان نباشند. شرط یگانگی را به طور صریح میتوان یه این صورت فرمول بندی کرد که اگر و آنگاه الزاماً .
علامتها
برای هر یگانه عضو در که به ازای آن را با نشان میدهیم. در مورد تابع این علامتگذاری، سایر علامتگذاریهایی را که در مورد روابط کلی تر استفاده میشوند چون یا را متروک ساختهاست. از این پس اگر یک تابع باشد، بجای یا مینویسیم. عضو را مقدار تابع به ازای متغیر یا شناسه یا تصویر تحت میگوییم و نیز را پیش نگاره میگوییم.
اگر تابعی از مجموعه به (در یا به توی) مجموعه باشد، این مطلب را به صورت سه تایی یا به طور معمول تر برای توابع با نشان میدهیم.
مشخص کردن تابع
برای مشخص کردن یک تابع باید دامنه و ضابطه آن را بشناسیم. منظور از ضابطه یک تابع، فرمول و یا دستوری است که برطبق آن برای هر ، مقدار تابع در یعنی تعیین میشود. ضابطه تابع را میتوان به صورت یک گزاره جبری، مجموعهای از زوجهای مرتب یا یک رابطه بازگشتی مشخص کرد.
به این ترتیب برای مشخص کردن یک تابع از مجموعه به مجموعه مینویسیم و سپس ضابطه آن را ذکر میکنیم.
در مواقعی که بیم ابهام نرود دامنه تابع ذکر نشده و به ذکر ضابطه تابع بسنده میشود. مثلاً عرف بر این است که در حساب دیفرانسیل و انتگرال دامنه توابع در صورت ذکر نشدن اعداد حقیقی یا بازهای از اعداد حقیقی باشد.
برای نمایش بهتر، تابع را که خود یک هنجار (قاعده) برای تناظر است با f نشان میدهیم و ورودی یا شناسهٔ این تابع را با نشان میدهیم که ممکن است عدد هم نباشد. یگانه مقدار خروجی که هنجار به ورودی نسبت میدهد را بجای اینبار با نشان میدهیم و آن را مقدار تابع در یا تصویر تحت میگوییم. همچنین از این پس به قاعدهای که هر را به نسبت میدهد ضابطه تابع میگوییم.
نباید تابع را با ضابطهٔ آن اشتباه کرد. به عنوان مثال در مثال بالا معرف خود تابع و گزاره معرف ضابطه تابع است.
دامنه و برد تابع
یک تابع f از مجموعه X به توی مجموعه Y را به عنوان نوعی رابطه از مجموعه X به Y تعریف کردیم. مفاهیم دامنه (تابع) و برد همانگونه که برای روابط در حالت کلی قابل تعریفاند، به طریق اولی برای تابع f نیز قابل تعریف خواهند بود. بنا به تعریف دامنه تابع f که با domf نموده میشود، همان مجموعه X است. برد تابع f نیز مجموعه همه عناصری از Y است که تصویر عضوی از X تحت f باشند. برد تابع f را با ranf یا Imf نشان میدهیم. بنابه تعریف داریم:
اما همانطور که در گذشته نیز اشاره شد و از تعریف فوق نیز قابل برداشت است، برد f در حالت کلی لزوماً برابر مجموعه Y نمیباشد بلکه زیرمجموعهای از آن است. برای تمایز بین مجموعه Y و برد تابع f به مجموعه Y همدامنه تابع f میگویند و آن را با codomf نشان میدهیم و بنا بر آنچه گفته شد، برد تابع زیرمجموعهای از همدامنهاش هست.
به عنوان مثال فرض کنید {X={۱٬۲٬۳ و {Y={a,b,c,d و تابع f:X→Y به صورت {(f={(۱,a),(۲,b),(۳,c تعریف شده باشد. وضوحاً دامنه این تابع مجموعه X است (میتوان برای تعیین آن مجموعه همه مولفههای اول زوجهای مرتب f را در نظر گرفت) ولی برد آن بنابه تعریف مجموعه {a,b,c} است که آشکارا زیرمجموعه حقیقی Y است.(یعنی زیرمجموعه آن است ولی با آن برابر نمیباشد)
در حقیقت برد تابع f مجموعه همه مولفههای دوم زوج مرتبهای f است. مجموعه همه عناصری از Y که به ازای یکx∈X داشته باشیم (y=f(x.
تساوی دو تابع
فرض کنید f:X→Y و g:Z→W دو تابع باشند. در این صورت تساوی f=g، تساوی بین دو مجموعه است و لذا f=g اگر و فقط اگر اعضای f و g یکسان باشند. یا به عبارتی دو تابع f و g با هم برابرند اگر و تنها اگر دامنهشان با هم برابر باشد و برای هر x از دامنه مشترکشان، (f(x)=g(x. نقاط اشتراک نمودارتابع fوتابع g در دستگاه مختصات مقدار x رانشان میدهد که به ازای آن دو تابع برابر اندفرض کنیدیکی از نقاط مورد نظر نقطه ی(A(X,Y یاشد این نقطه محل برخورد نمودار دو تابع fوgاست ومحل برخورد نمودار تابعf و نمودار تابعhar که معکوس تابعf نسبت به تابع gاست بنا بر این دو تابع F,و g زمانی در نقطهای مانند A برابر اند که نمودار تابع fونمودارتابع har در نقطهٔ A برابر باشند.
تحدید و توسیع
فرض کنید f:X→Y یک تابع و A زیرمجموعهای از X باشد. در این صورت یک روش برای ساختن تابعی چون g از مجموعه A به مجموعه Y این است که برای هر g(x)، x∈A را مساوی (f(x تعریف کنیم. یعنی تابع g:A→Y با ضابطه (g(x)=f(x. بر خوانندهاست که خوش تعریفی این تابع را تحقیق کند. ممکن است راه دیگری نیز برای بیان این مطلب بیابیم و آن این است که دامنه تابع f را به زیرمجموعه A از X تقلیل دهیم. در این صورت تابعی خواهیم داشت که این بار نه بر روی همه اعضای X بلکه فقط بر روی عناصر زیرمجموعه خاصی از X یعنی A اثر میکند و لذا دامنه آن از X به A تغییر مییابد. چنین تابعی را که همان g است تحدید تابع f به مجموعه A میگوییم و آن را با f|A یا f|A نشان میدهیم. با این نمادگذاری داریم g=f|A. همچنین تابع f را توسیع تابع g به مجموعه X میگوییم.
بنابراین مفاهیم تحدید و توسیع دو مفهوم متقابل به هم میباشند. تحدید یک تابع به زیرمجموعهای از دامنه خود همواره یک تابع است اما توسیع دامنه یک تابع به یک مجموعه جدید که دامنه تابع قبل زیرمجموعهای از آن است
اگه کار خودتون نیست، منبع ذکر شود.